Stent coverage and malapposition assessed by OCT Myeong-Ki Hong, M.D. Ph D

Professor of Medicine

Division of Cardiology, Severance Cardiovascular Hospital Yonsei University College of Medicine, Seoul, Korea

Potential conflicts of interest

□ I have the following potential conflicts of interest to report:

Consulting Employment in industry Stockholder of a healthcare company Owner of a healthcare company Other(s)

Ճ I do not have any potential conflict of interest

Traditional OCT image analysis

Analysis of cross-sectional OCT images at a 1-mm interval (every 15 frames).

1. Neointimal thickness

The distances between the endoluminal surface of neointimal and the strut reflection

2. Stent apposition

The distances between the endoluminal surface of the strut reflection and the vessel wall

What are the clinical implications of uncovered stent struts and stent malapposition by OCT ?

So far, no definite clinical data, however.....

9 months FU OCT - Cypher Stent

Malapposed and uncovered struts

Covered struts with neointima

Are you acceptable or OK when you look at the uncovered or malapposed struts at follow-up OCT ? Maybe everybody no

Uncovered stent struts.

SEVERANCE CARDIOVASCULAR HOSPITAL

Pathological Correlates of Late Drug-Eluting Stent Thrombosis Strut Coverage as a Marker of Endothelialization

The most powerful histological predictor of stent thrombosis was endothelial coverage.

The best morphometric predictor of LST was the ratio of uncovered to total stent struts.

The odds ratio for thrombus with a ratio of uncovered to total struts > $30\% \Rightarrow 9.0$ (95% CI , 3.5 to 22)

Finn AV, et al. Circulation 2007;115:2435-41

OCT definition

Uncovered strut = Neointimal hyperplasia (NIH) thickness of 0 µm

The percentage of uncovered struts = (number of uncovered struts/total number of struts in all cross-sections of the lesion) × 100

OCT Evaluation of ZES at 9 Month FU

SEVERANCE CARDIOVASCULAR HOSPITAL

OCT findings

Measured at every 0.5 mm

30 patients (16 stents in 15 ACS and 15 stents in 15 SA)

683 mm in stent length including 12074 struts

OCT findings

30 patients (16 stents in 15 ACS and 15 stents in 15 SA)

683 mm in stent length including 12074 struts

Stent struts on Side Branch ?

Neointimal Coverage on the DES Struts Crossing the Side-Branch Vessels: an OCT Study

Her AY, Hong MK et al, Am J Cardiol 2010;105:1565-69

SEVERANCE CARDIOVASCULAR HOSPITAL

OCT analysis among types of DESs

	SES	PES	ZES	D
	(n=22)	(n=15)	(n=14)	F
Side branch vessel side				
Total No. of struts, n	356	165	143	
Percentage of covered struts, %	65±37	20 ± 31	83±29	<0.001
Neointimal hyperplasia thickness, mm	0.04 ± 0.03	0.02 ± 0.02	0.08±0.06	0.002
Mean No. of struts	16±12	11±7	13±12	0.360
No. of covered struts	10±10	1±2	11 ± 11	0.010

Comparison of neointimal thickness on unapposed struts crossing the side-branch

Composition of struts coverage crossing the side branch

Major determinants of uncovered struts

Major determinants of uncovered stent struts

Kim BK, Hong MK, Int J Cardiovasc Imaging (in press)

The prevalence of uncovered struts in ZES-R and

EES at 9-Month follow-up: Randomized study

Stent malapposition

SEVERANCE CARDIOVASCULAR HOSPITAL

Serial Changes of Tiny Stent Malapposition Not Detected by Intravascular Ultrasound (Follow-up Optical Coherence Tomography Study)

Tiny post-SM: SM not detected by IVUS, but be visualized with OCT.

Study population

- 42 patients from the Yonsei OCT registry :
- Both post-stent & follow-up OCT examination after DES implantation

Initial tiny post-SM was found in 26 (62%) of 42 patients

Kim WH, Hong MK et al, Clin Res Cardiol 2010;99:639-644

SEVERANCE CARDIOVASCULAR HOSPITAL

OCT measurements (n=26)

	Immediate post-stenting	Follow up	P Value
Number of analyzed stent struts	5615	5474	
Mean length of analyzed segment (mm)	22.8 ± 6.2	22.9 ± 5.1	0.22
Length of malapposition segment (mm)	2.3 ± 2.3	0.1 ± 0.3	<0.001
Num. of malapposed struts (n)	27 ± 26	2 ± 5	<0.001
% of malapposed struts (%)	12.2 ± 11.0	1.0 ± 2.2	<0.001
Mean stent area at the segment with malapposed struts (mm ²)	7.37 ± 1.71	7.39 ± 1.65	0.08
Mean extra-malapposition area (mm ²)	0.35 ± 0.16	0.04 ± 0.11	<0.001
Largest extra-malapposition area (mm ²)	$0.54~\pm~0.46$	0.07 ± 0.18	<0.001
Mean NIH thickness at the segment with malapposed struts (mm)		0.15 ± 0.1	

Kim WH, Hong MK et al, Clin Res Cardiol 2010;99:639-644

Corresponding images of IVUS & OCT

(A) Malapposed struts of an SES. 3 stent struts seem to float into the lumen with an extrastent area (arrows). Smallsized post-SM is not be detected by IVUS, but be clearly visualized with OCT image follow-up OCT

(B) Follow-up OCT images shows that all strut surfaces is covered by neointima

Malapposed vs. Uncovered Struts.

Variables	Non-malapposition (n=232)	Malapposition (n=74)	p value
No. of cross section, n	5448	1731	-
% malapposed struts, %	0	3.2 ± 4.9	-
% uncovered struts from all cross sections, %	3.7 ± 6.4	11.6 ± 13.3	<0.001
% uncovered struts in the cross sections without malapposition, %	3.7 ± 6.4	10.1 ± 12.0	<0.001
Thrombi, n (%)	20 (9%)	18 (24%)	<0.001
Types of DES used			<0.001
SES, n (%)	59 (25%)	37 (50%)	
PES, n (%)	44 (19%)	10 (14%)	
ZES-Sprint, n (%)	54 (23%)	4 (5%)	
ZES-Resolute, n (%)	38 (16%)	15 (20%)	
EES, n (%)	37 (16%)	8 (11%)	

Kim BK, Hong MK, et al. J Interven Cardiol (in press)

Malapposed vs. Uncovered Struts.

Variables	Non- malapposition (n=232)	Malapposition I % malapposed struts <1.3% (n=37)	Malapposition II % malapposed struts ≥1.3% (n=37)	p value
% malapposed struts, %	0%	$0.7\pm0.3\%$	$5.6 \pm 6.1\%$	<0.001
% uncovered struts from all cross sections, %	3.7 ± 6.4	5.5 ± 5.6	17.6 ± 15.9	<0.001
% uncovered struts in the cross sections without malapposition, %	3.7 ± 6.4	5.2 ± 5.7	15.0 ± 14.4	<0.001
Thrombi, n (%)	20 (9%)	8 (22%)	10 (27%)	<0.001
Time to OCT (days)	312 ± 92	303 ± 68	315 ± 81	0.785
FU after OCT (days)	480 ± 315	484 ± 282	475 ± 210	0.921
Duration of DAT after OCT (days)	252 ± 214	299 ± 227	313 ± 258	0.129
MACE after OCT	0	0	1 STEMI	

Kim BK, Hong MK, et al. J Interven Cardiol (in press)

Is the traditional OCT analysis sufficient ?

A Length: 0.05mm A Length: 0.05mm A Length: 0.05mm B Length: 0.05mm C Length: 0.04mm B Length: 0.04mm C Length: 0.05mm C Length: 0.07mm D Length: 0.07mm B Length: 0.07mm D Length: 0.07mm D Length: 0.07mm F Length: 0.09mm F Length: 0.08mm F Length: 0.08mm G Length: 0.09mm G Length: 0.08mm F Length: 0.08mm H Length: 0.09mm H Length: 0.02mm H Length: 0.09mm H Length: 0.07mm J Length: 0.07mm J Length: 0.07mm K Length: 0.07mm J Length: 0.07mm J Length: 0.07mm K Length: 0.07mm J Length: 0.07mm J Length: 0.07mm M Length: 0.01mm K Length: 0.06mm K Length: 0.07mm M Length: 0.03mm M Length: 0.03mm M Length: 0.03mm M Length: 0.03mm N Length: 0.03mm M Length: 0.03mm O Length: 0.03mm N Length: 0.03mm N Length: 0.03mm P Length: 0.03mm N Length: 0.03mm N Length: 0.03mm C Length: 0.03mm R Length: 0.03mm N Length: 0.03mm M Length: 0.03mm R Length: 0.03mm N Length: 0.03mm D Length: 0.03mm R Length: 0.03mm R Length: 0.03mm D Length: 0.03mm R Length: 0.03mm R Length: 0.03mm C Length: 0.03mm R Length: 0.03mm R Length: 0.03mm M Length: 0.03mm R Length: 0.03mm R Length: 0.03mm N Length: 0.03mm R Length: 0.03mm R Length: 0.03mm N Length: 0.03mm R Length: 0.03mm R Length: 0.03mm N Length: 0.03mm R Length: 0.03mm R Length: 0.03mm N Length: 0.03mm R Length: 0.03mm R Length: 0.03mm N Length: 0.03mm R Length: 0.03mm R Length: 0.03mm N Length: 0.05mm S Length: 0.03mm R Length: 0.03mm N Length: 0.05mm S Length: 0.03mm R Length: 0.03mm N Length: 0.05mm S Length: 0.03mm R Length: 0.03mm N Leng

Zoom: 1.9x

Zoom: 1.9x

Neointimal thickness

Zoom: 1.9x

Stent apposition

What are the spatial distributions of uncovered or malapposed struts ?

Spread-out-vessel graphic

Gutie'rrez-Chico JL et al, Eur Heart J 2011; 32: 2454-2463

Creation of contour map

Data (x, y, z) = Data (arc length, stent length, NIH thickness)

Creation of contour map

This technology provides detailed information previously obtainable only by gross pathologic examination.

Contour map of SES at follow-up OCT

SEVERANCE CARDIOVASCULAR HOSPITAL

Contour map of ZES at follow-up OCT

Serial OCT

SEVERANCE CARDIOVASCULAR HOSPITAL

Serial OCT

Study population

From the OCT registry database of our institute, we identified 250 patients who underwent follow-up OCT examination at 9 months (± 3 months) after DES implantation.

Among these patients, a second serial follow-up OCT examination at 2 years (± 3 months) after stent implantation was performed <u>in 72 patients with 76</u> <u>stented lesions: 23 SESs, 20 PESs, 25 ZESs and 8</u> <u>EESs</u>.

2-year follow-up

9-month follow-up

Quantitative OCT analysis

Cross-section (CS) level analysis	9-month	2-year	p
Total cross sections	1947	1947	
Mean stent CSA (mm ²)	7.0 ± 1.6	7.0 ± 1.6	0.92
Mean lumen CSA (mm ²)	5.7 ± 1.4	5.4 ± 1.6	0.01
Mean NIH area (mm ²)	1.3 ± 0.9	1.7 ± 1.1	0.001
Percent NIH CSA (%)	18.7 ± 11.3	23.4 ± 14.5	<0.001
CSs with any uncovered strut	418 (21.5%)	244 (12.5%)	<0.001
CSs with uncovered strut ratio > 0.3	153 (7.9%)	91 (4.7%)	<0.001
CSs with any malapposed strut	50 (2.6%)	70 (3.6%)	0.36

Quantitative OCT analysis

Strut level analysis	9-month	2-year	р
Total strut number	19430	19475	
Mean NIH thickness (µm)	164 ± 95	214 ± 132	<0.001
Percentage of uncovered struts	787 (4.1%)	468 (2.4%)	<0.001
Percentage of malapposed strut	127 (0.7%)	183 (0.9%)	0.24
Percentage of uncovered and malapposed struts	76 (0.4%)	82 (0.4%)	0.89

Serial OCT across side-branch 1st follow-up OCT at 9-month

	PES	SES	ZES	Р
	(n=10)	(n=10)	(n=10)	
Side branch vessel				
Median no. of struts	18(5~45)	17(4~39)	22(7~82)	0.524
No. of uncovered struts	15(5~42)	7(0~18)	4(0~23)	0.011
Percentage of uncovered struts, %	92(60~100)	39(0~100)	14(0~61)	<0.0001
Mean NIH thickness, mm	0.02(0~0.15)	0.04(0~0.14)	0.05(0.01~0.22)	0.168

Serial OCT across side-branch 2nd follow-up OCT at 2-year

	PES	SES	ZES	Ρ
	(n=10)	(n=10)	(n=10)	
Side branch vessel				
Median no. of struts	13(5~36)	18(5~54)	19(2~93)	0.442
No. of uncovered struts	8(0~33)	6(0~20)	2(0~9)	0.052
Percentage of uncovered struts, %	82(0~100)	26(0~59)	5(0~44)	0.001
Mean NIH thickness, mm	0.02(0~0.07)	0.05(0.02~0.14)	0.06(0.03~0.24)	0.021

Change of uncovered struts grouped by serial OCT

Change of uncovered struts grouped by stent types

SEVERANCE CARDIOVASCULAR HOSPITAL

Limitation

- These studies were single center study with a relatively small population and might have a risk of selection bias.
- The detected neointima does not fully reflect an intact functioning endothelium.
- There were no data on clinical implications of neoinitmal coverage detected by OCT.

However....

After introduction of a frequency-domain OCT system (C7-XR) with faster pullback speeds (20 mm/s) in clinical practice, OCT examination could be a more useful and comfortable tools to evaluate the status of uncovered stent struts and stent malapposition.

I expect that clinical data to evaluate the impacts of uncovered or malapposed DES struts detected by OCT on long-term clinical outcomes will be available in near future.

